
BigData in Real-time

TCloud Computing 天云趋势

孙振南
zhennan_sun@tcloudcomputing.com

Impala Introduction

2012/12/13
Beijing

Apache Asia Road Show



Background (Disclaimer)

• Impala is NOT an Apache Software Foundation project yet

• Impala uses ASLv2

• The speaker (me) is NOT associated with Cloudera



WHY
Impala



The Need For Speed

• What’s wrong with MapReduce? 

– Batch oriented. Good at complex jobs

– But slow at startup & shuffle

– Programmer friendly

• How about Hive? 

– SQL friendly. Still slow as …

• How about HBase? 

– Slow data import

– No SQL



The leads from the leader

• Google BigQuery, the service

– Based on Google Dremel, the paper

• SQL-like interface

• Interactive analysis of PBs data

• Query Execution Tree

– Tasks to sub-tasks, instead of identical distributed tasks

• Columnar storage based on nested ProtoBuffer data

– Faster traversing

• Amazon RedShift is another story…



Open source alternatives?

• Apache Drill

– No substantial progress

– Mailing list msg # droped 80% from Sep to Nov 

• Berkeley Shark/Spark

– Shared memory based, good at iteration tasks

– Different component stack

• Cloudera Impala



Positioning

• Compared with MR, it’s all about trade-off

– Complexity or responsiveness

– General purpose or ad-hoc

• MPP-RDB paradigms on top of commodity DFS

– On par performance in some cases

– Extremely cheap

– Linear scalability



WHAT
is

Impala



Features

• Distributed SQL on raw HDFS files
– Select, where, aggregation, join, 
– Insert into/overwrite
– Text and Sequence files

• Hive compatible “meta store” and interface

– Reuse Hive’s metadata schema, DDL and JDBC/ODBC driver

• Up to 90x times faster, compared with Hive
– Purely I/O bound scenario, 3-4X
– With joins, 7-45X
– With memory cached, 20-90X



Status

• Announced at Oct/2012

– Now 0.3 at Dec/5

– Has been private beta for half-year

– Currently in public beta

– Target GA @ 2013 Q1

• Entirely developed by Cloudera (by now)

– In the past 2 years, 7 full time engineers

• Completely open source, ASLv2



Example
$ hive

hive> CREATE TABLE sales (id STRING, item STRING, price int); 

hive> load data local inpath ‘/store/sales.txt’ into table sales;

$ impala-shell –impalad=172.16.204.4:21000

[172.16.204.4:21000]> show tables

sales

[172.16.204.4:21000]> select * from sales where price > 100 limit 3

13221 COOKIE 138

38384 DIPER 287

85845 TV 737



Workflow Overview

HDFS DataNode

Impalad

HDFS DataNode

Impalad

HDFS DataNode

Impalad

HDFS DataNode

Impalad

CLI
Client

ODBC
Driver

Meta data
MySQL

Impala State Store

1-on-1 communication

Simplified multi-way communication

Hue
Beeswax

HDFS NameNode



HOW
the Impala
speed up



‘MPP’ SQL 

• PlanNode
– Node of the Depth-First execution plan tree
– Various types

• HDFS_SCAN_NODE, HBASE_SCAN_NODE
• HASH_JOIN_NODE
• AGGREGATION_NODE, SORT_NODE
• EXCHANGE_NODE

• Fragment
– Atomic executable unit, could be distributed
– Contains one or more PlanNodes

• Depends on the data distribution and the SQL statement



SQL breakdown sample

• There’s a saying that young single males don’t use 

coupon or discount as much as others, is it true?

• We can compare the list price and sales price

• Items are a little bit expensive

• Buyers are young, single, male

• Live in major city



SQL breakdown sample - tables

store_sales
ss_item_id

ss_customer_id
ss_sales_price

……
customer

c_id
c_gender

c_marital_status
c_city
……

item
i_item_id

i_list_price
……



SQL breakdown sample – SQL statement

select i_item_id, i_list_price, avg(ss_sales_price) agg1

FROM store_sales

JOIN item on (store_sales.ss_item_id = item.i_item_id)
JOIN customer on (store_sales.ss_customer_id = customer.c_id)

where

i_list_price > 1000 and
c_gender = 'M' and
c_marital_status = 'S‘ and

c_city in ('Beijing','Shanghai','Guangzhou')

group by i_item_id,

order by i_list_price

limit 1000



Execution plan tree

Scan
sales_store

Scan
customer

Scan
item

Join on
item_id

Join on
customer_id

Group by &
Aggregation

Sort & Limit



Execution plan tree – Distributed!

Scan
sales_store

Scan
customer

Scan
item

Join on
item_id

Join on
customer_id

Group by &
Local Agg

Total 
Aggregation

Sort / Limit

Distributable

Indistributable



From execution plan to fragment

Scan
sales_store

Scan
customer

Scan
item

Join on
item_id

Join on
customer_id

Group by &
Aggregation

Total 
Aggregation

Sort / Limit



From execution plan to fragment

Scan
sales_store

Scan
customer

Scan
item

Join on
item_id

Join on
customer_id

Group by &
Aggregation

Total 
Aggregation

Sort / Limit



From execution plan to fragment

Scan
sales_store

Scan
customer

Scan
item

Join on
item_id

Join on
customer_id

Group by &
Aggregation

Total 
Aggregation

Sort / Limit



THAT’S IT?



There’s more…

• Written in C++
– Only used jFlex/CUP to parse the SQL statement

• Local compilation of fragments
– LLVM is used

• Disk awareness
– Not just host awareness
– dfs.datanode.hdfs-blocks-metadata.enabled
– “40% faster”

• Direct read
– Not via HDFS NameNode then DataNode then …
– dfs.client.read.shortcircuit, dfs.client.read.shortcircuit.skip.checksum



GOOD
ENOUGH?



TODOs

• No Data Definition Language yet

• No User Defined Function yet

• No fault tolerance yet

• Avro, RCFile, LZO, Trevni support is on the way
– Impala + Trevni will introduce another performance boost

• With more SQL functions compared with BigQuery

• In memory Join only
– Will be fixed in GA

• Partition before join, reduce traffic

• Support Hive partitions, but not buckets yet



INSIDE



Exec Engine

ImpaladPython CLI

JDBC/ODBC

Hue Beeswax
Frontend

Coordinator

Exec Engine

Thrift
Meta data

MySQL

Another Impalad

22000

Planner
jFlex/CUP

22000
Backend, ImpalaInternalService

25000

JNI

21000 (Frontend, ImpalaService)

2400023000
Register

&
Subscribe

State Store

HDFS

HBase



All C++ code, both be and fe

LLVM IR generation

PlanNode implementation

Math, date, string, time, agg, etc

Coordinator, Executor, etc

main(), thrift server

State store

.thrift, very useful

Frontend, Planner

Python CLI shell



@少年振南


